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Data Science Movie

Recommendation System

Project in R

Have you ever been on an online streaming platform like Netflix, Amazon
Prime, Voot? I watched a movie and after some time, that platform started
recommending me different movies and TV shows. I wondered, how the
movie streaming platform could suggest me content that appealed to me.
Then I came across something known as Recommendation System. This
system is capable of learning my watching patterns and providing me with
relevant suggestions. Having witnessed the fourth industrial revolution
where Artificial Intelligence and other technologies are dominating the
market, I am sure that you must have come across a recommendation
system in your everyday life. I am also sure that by this time curiosity must
be getting the best of you. Therefore, in this Machine Learning Project, I

will teach you to build your own recommendation system. So. let’s start.
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Action Comedy
Genres 9 Genres

A

1 Similar Movie

Watched by her, Recommended to him Recommended to User

Movie Recommendation System
Project using ML

The main goal of this machine learning project is to build a
recommendation engine that recommends movies to users. This R project
is designed to help you understand the functioning of how a
recommendation system works. We will be developing an Item Based
Collaborative Filter. By the end of this tutorial, you will gain experience of
implementing your R, Data Science, and Machine learning skills in a real-

life project.

Before moving ahead in this movie recommendation system project in ML,
you need to know what recommendation system means. Read below to find

the answer.

What is a Recommendation System?
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A recommendation system provides suggestions to the users through a
filtering process that is based on user preferences and browsing history.
The information about the user is taken as an input. The information is
taken from the input that is in the form of browsing data. This information
reflects the prior usage of the product as well as the assigned ratings. A
recommendation system is a platform that provides its users with various
contents based on their preferences and likings. A recommendation system
takes the information about the user as an input. The recommendation

system is an implementation of the

machine learning algorithms.

Recommendation System Project
Item-based Collaborative Filtering

Recommended
to User 3

USER 1

JUSTICE
LEAGLIE

Watches ovle 3 d)giti-a

A recommendation system also finds a similarity between the different
products. For example, Netflix Recommendation System provides you with

the recommendations of the movies that are similar to the ones that have


https://data-flair.training/blogs/machine-learning-algorithms/
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been watched in the past. Furthermore, there is a collaborative content
filtering that provides you with the recommendations in respect with the
other users who might have a similar viewing history or preferences. There
are two types of recommendation systems — Content-Based
Recommendation System and Collaborative Filtering Recommendation. In
this project of recommendation system in R, we will work on a collaborative
filtering recommendation system and more specifically, ITEM based

collaborative recommendation system.

You must check how Netflix recommendation engine works

How to build a Movie
Recommendation System using
Machine Learning

Dataset

In order to build our recommendation system, we have used the MovieLens
Dataset. You can find the movies.csv and ratings.csv file that we have used

in our Recommendation System Project siere. This data consists of 105339

ratings applied over 10329 movies.

Importing Essential Libraries

In our Data Science project, we will make use of these four packages —

‘recommenderlab’, ‘ggplot2’, ‘data.table’ and ‘reshape2’.

Code:


https://data-flair.training/blogs/data-science-at-netflix/
https://drive.google.com/file/d/1Dn1BZD3YxgBQJSIjbfNnmCFlDW2jdQGD/view
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library (recommenderlab)

Output Screenshot:

library(recommenderlab)
## Loading required package: Matrix
## Loading required package: arules

##
## Attaching package: 'arules’

## The following objects are masked from 'package:base’:
##
## abbreviate, write

## Loading required package: proxy

##
## Attaching package: 'proxy’

## The following object is masked from 'package:Matrix':

#3#
## as.matrix
Code:
library (ggplot2) #Author DataFlair

library(data.table)

library (reshape2)

Output Screenshot:
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library(ggplot2) #Author DataFlair

## Registered 53 methods overwritten by 'ggplot2':

##  method from
## [.quosures rlang
##  c.guosures rlang

## print.quosures rlang

library(data.table)
library(reshape2)

#H#H
## Attaching package: 'reshape2’

## The following objects are masked from 'package:data.table':
##
## dcast, melt

Wait! Don'’t forget to check our leading guide on R programming

classification

Retrieving the Data

We will now retrieve our data from movies.csv into movie data dataframe
and ratings.csv into rating_ data. We will use the str() function to display

information about the movie _data dataframe.

Code:

setwd ("/home/dataflair/data/movie data") #Author
DataFlair

movie data <- read.csv("movies.csv",stringsAsFactors=FALSE)


https://data-flair.training/blogs/classification-in-r/
https://data-flair.training/blogs/classification-in-r/
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rating data <- read.csv("ratings.csv")

str (movie data)

Output Screenshot:

setwd("/home/dataflair/data/movie _data") #Author DataFlair
movie data <- read.csv("movies.csv",stringsAsFactors=FALSE)

rating data <- read.csv("ratings.csv")

str(movie data)

## 'data.frame': 18329 obs. of 3 variables:

## % movieId: int 123 4567 89 10 ...

## $ title : chr "Toy Story (1995)" "Jumanji (1995)" "Grumpier Old Men (1985)" "
Waiting to Exhale (1995)"

## % genres : chr "Adventure|Animation|Children|Comedy|Fantasy" "Adventure|Childr
en|Fantasy" "Comedy|Romance" "Comedy|Drama|Romance"

ad

We can overview the summary of the movies using the summary() function.
We will also use the head() function to print the first six lines of

movie_data

Code:

summary (movie data) #Author DataFlair

Output Screenshot:



summary (movie data)

#H#
##
#H
=
==

##
B

Code:

movield
Min. : 1
1st Qu.: 3240
Median : 7088

Mean : 31924
3rd Qu.: 59900
Max. :149532

head (movie data)

Output Screenshot:

head (movie data)

g o o o o g o

(= BRSSP

movield

[ B 1 I = 4 I S B
= B W R

#Author DataFlair

title genres
Length:10329 Length:10329
Class :character Class :character
Mode :character Mode :character

title

Toy Story (1995)

Jumanji (1995)

Grumpier 0ld Men (1995)
Waiting to Exhale (1995)

Father of the Bride Part II (1995)

Heat (1995)
genres

Adventure|Animation|Children|Comedy | Fantasy

Adventure|Children|Fantasy
Comedy | Romance
Comedy | Drama | Romance
Comedy
Action|Crime|Thriller
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Similarly, we can output the summary as well as the first six lines of the

‘rating_ data’ dataframe —

Code:

summary (rating data)

Output Screenshot:

summary({rating data)

#H# userld

##  Min.
1st Qu.:
Median
Mean

3rd Qu.:
#  Max.

TEER

Code:

1.
192,

:383.
:364.

557.

:668.

head (rating data)

Output Screenshot:

o= I oo T T I o TR o I e

#Author DataFlair

#Author Dat

movield
Min. : 1
1st Qu.: 1873
Median : 2497

Mean : 13381
3rd Qu.: 5991
Max. : 149532

head(rating data)

aFlair

rating
Min. :0.
1st Qu.:3
Median :3
Mean 2.
3rd Qu.:4
Max. 5

## userld movield rating timestamp

# 1
#H 2
## 3
# 4
## 5
## 6

1

H o e

16 4.0
24 1.5
32 4.0
47 4.0
50 4.0
110 4.0

1217897793
1217895807
1217896246
1217896556
1217896523
1217896150

500

.000
.500

517

.000
:5.000

timestamp
Min. :8.286e+08
1st Qu.:9.711e+08
Median :1.115e+09
Mean :1.130e+09
3rd Qu.:1.275e+09
Max. :1.452e+09
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Revise your R concepts with DataFlair for Free, checkout 120+ FREE R

Tutorials

Data Pre-processing

From the above table, we observe that the userld column, as well as the
movield column, consist of integers. Furthermore, we need to convert the
genres present in the movie_data dataframe into a more usable format by
the users. In order to do so, we will first create a one-hot encoding to create

a matrix that comprises of corresponding genres for each of the films.

Code:

movie genre <- as.data.frame (movie data$genres, stringsAsFactors=FALSE)
library(data.table)
movie genre2 <- as.data.frame(tstrsplit (movie genrel[,1], '[|]"',
type.convert=TRUE) ,
stringsAsFactors=FALSE) #DataFlair

colnames (movie genre2) <- c(1:10)

list genre <- c("Action", "Adventure", "Animation", "Children",
"Comedy", "Crime","Documentary", "Drama", "Fantasy",
"Film-Noir", "Horror", "Musical", "Mystery","Romance",
"Sci-Fi", "Thriller", "War", "Western")

genre matl <- matrix(0,10330,18)

genre matl[1l,] <- list genre


https://data-flair.training/blogs/r-tutorials-home/
https://data-flair.training/blogs/r-tutorials-home/
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colnames (genre matl) <- list genre

for (index in l:nrow(movie genre2)) {

for (col in l:ncol (movie genre2)) {
gen col = which(genre matl[1l,] == movie genre2[index,col]) #Author
DataFlair

genre matl[index+l,gen col] <- 1

genre mat2 <- as.data.frame(genre matl[-1,], stringsAsFactors=FALSE)

#fremove first row, which was the genre list
for (col in l:ncol(genre mat2)) {

genre mat2[,col] <- as.integer(genre mat2[,col]) f#convert from characters

to integers

str (genre mat2)

Screenshot:



movie genre <- as.data.frame(movie datas$genres, stringsAsFactors=FALSE)
library(data.table)
movie genre2 <- as.data.frame(tstrsplit(movie genre[,1], '[]|]’,
type.convert=TRUE),
stringsAsFactors=FALSE) #DataFlair
colnames (movie_genre2) <- c(1:10)

list genre <- c("Action", "Adventure", "Animation", "Children",
"Comedy", "Crime","Documentary", "Drama", "Fantasy",
"Film-Noir", "Horror", "Musical", "Mystery","Romance",
"Sci-Fi", "Thriller", "War", "Western")

genre matl <- matrix(0,10330,18)
genre_matl[1,] <- list_genre
colnames(genre_matl) <- list genre

for (index in l:nrow(movie genre2)) {
for (col in 1l:ncol(movie genre2)) {

gen_col = which(genre _matl[1,] == movie genre2[index,col]) #Author DataFlair

genre_matl[index+1,gen_col] <- 1
}
b

genre_mat2 <- as.data.frame(genre matl[-1,], stringsAsFactors=FALSE) #remove first row, which was the genre list

for (col in 1l:ncol(genre_mat2)) {

genre mat2[,col] <- as.integer(genre_mat2[,col]) #convert from characters to integers

}

str(genre_mat2)

Output —
## 'data.frame': 10329 obs. of 18
# $ Action :int 66080160
# % Adventure : int 1100000
# $ Animation : int 1000000
# $ Children :int 11080080
#Ht $ Comedy vint: 1.E1IA LB
# S5 Crime :int 000010
# $ Documentary: int 0 G 0 0 00O
# $ Drama :int 00108680
# $ Fantasy int 11060 08
## $ Film-Noir : int 00O 900000
## $ Horror :int G686 00980
#H $ Musical :int 00000006
#H $ Mystery :int 6068060
## $ Romance s int 86 11881
# $ Sci-Fi : int 0606800000
# $ Thriller :int 000010
#H S War :int OO0 0B0OBDO
## < Western :int 0G0 606 B0°

variables:

O 0900000000000 o0
o O 00 0000 00 oo o o oo
e R e B B e R e I v s N n Y = [ <» B e R » R = R < » = N <= B o

1§

1
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In the next step of Data Pre-processing of R project, we will create a ‘search

matrix’ that will allow us to perform an easy search of the films by

specifying the genre present in our list.

Code:

SearchMatrix <- cbind(movie datal[,1:2], genre mat2[])

head (SearchMatrix)

Output Screenshot:

SearchMatrix <- cbind(movie data[,1:2], genre mat2[])

#DataFlair

title Action Adventure Animation

oo ek~

head(SearchMatrix) #DataFlair

##  movield

#H 1 1 Toy Story (1995)
## 2 2 Jumanji (1995)
# 3 3 Grumpier 0ld Men (1995)
#H 4 4 Waiting to Exhale (1995)
## 5 5 Father of the Bride Part II (1995)
## 6 6 Heat (1995)
## Children Comedy Crime Documentary Drama Fantasy
# 1 1 1 ] ] 0

## 2 1 ] ] 0 0

## 3 0 1 ] e} 0

## 4 0 1 0 0 I

## 5 0 1 ] ] 3]

## 6 0 e 1 0 0

##  Mystery Romance Sci-Fi Thriller War Western

]

MmO © @ @

ilm-Noir

Lo I B v B <> I I s ]

4

o o oo

(o Il o B o B o B

0

Horror Musical

0

(o I o B <> B < T > ]

[ <= <= B <= T = T <= I <= |

There are movies that have several genres, for example, Toy Story, which is

an animated film also falls under the genres of Comedy, Fantasy, and

Children. This applies to the majority of the films.

For our movie recommendation system to make sense of our ratings

through recommenderlabs, we have to convert our matrix into a sparse

sle | Smart | Speed

00LS
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matrix one. This new matrix is of the class ‘realRatingMatrix’. This is

performed as follows:

Code:

ratingMatrix <- dcast(rating data, userId~movieId, value.var = "rating",
na.rm=FALSE)

ratingMatrix <- as.matrix (ratingMatrix[,-1]) #remove userIds
#Convert rating matrix into a recommenderlab sparse matrix
ratingMatrix <- as(ratingMatrix, "realRatingMatrix")

ratingMatrix

Output Screenshot:

ratingMatrix <- dcast(rating data, userId-movield, value.var = "rating", na.rm=F
ALSE)

ratingMatrix <- as.matrix(ratingMatrix[,-1]) #remove userlds

#Convert rating matrix into a recommenderlab sparse matrix

ratingMatrix <- as(ratingMatrix, "realRatingMatrix")

ratingMatrix

## 668 x 10325 rating matrix of class 'realRatingMatrix' with 185339 ratings.

Are you facing any trouble in implementing recommendation system

project in R? Comment below, DataFlair Team is ready to help you.

Let us now overview some of the important parameters that provide us

various options for building recommendation systems for movies-

Code:
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recommendation model <- recommenderRegistry$get entries(dataType =

"realRatingMatrix")

names (recommendation model)

Output Screenshot:

recommendation model <- recommenderRegistry$get entries(dataType = "realRatingMatrix")
names (recommendation model)

## [1] "ALS realRatingMatrix" "ALS implicit realRatingMatrix"
## [3] "IBCF realRatingMatrix" "POPULAR realRatingMatrix"

## [5] "RANDOM realRatingMatrix" "RERECOMMEND realRatingMatrix"
## [7]1 "SVD realRatingMatrix" "SVDF realRatingMatrix"

## [9] "UBCF realRatingMatrix"

Code:

lapply (recommendation model, "[[", "description")

Output Screenshot:

lapply(recommendation model, "[[", "description”)

## $ALS realRatingMatrix

## [1] "Recommender for explicit ratings based on latent factors, calculated by
alternating least squares algorithm."

##

#+ $ALS implicit realRatingMatrix

## [1] "Recommender for implicit data based on latent factors, calculated by alt
ernating least squares algorithm."

#H#

## $IBCF realRatingMatrix

## [1] "Recommender based on item-based collaborative filtering."

##

##+ $POPULAR realRatingMatrix

## [1] "Recommender based on item popularity.”

##
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Want to become the next data scientist? Try out the best way and explore

Data Science Tutorials Series to learn Data Science in an easy way with

DataFlair!!

We will implement a single model in our R project — Item Based

Collaborative Filtering.

Code:

recommendation model$IBCF realRatingMatrixS$parameters

Output Screenshot:

recommendation model$IBCF realRatingMatrix$parameters

## %k

## [1] 30

##

## $method

## [1] "Cosine"
##

#Ht $normalize

#Ht [1] "center"

##

# $normalize sim matrix
## [1] FALSE

##

## %alpha

## [1] 0.5

Exploring Similar Data


https://data-flair.training/blogs/data-science-tutorials-home/
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Collaborative Filtering involves suggesting movies to the users that are
based on collecting preferences from many other users. For example, if a
user A likes to watch action films and so does user B, then the movies that
the user B will watch in the future will be recommended to A and vice-versa.
Therefore, recommending movies is dependent on creating a relationship of
similarity between the two users. With the help of recommenderlab, we can
compute similarities using various operators like cosine, pearson as well as

jaccard.

Code:

similarity mat <- similarity(ratingMatrix([1:4, ],

method = "cosine",
which = "users")
as.matrix (similarity mat)
image (as.matrix (similarity mat), main = "User's Similarities")

Output Screenshot:
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similarity mat <- similarity(ratingMatrix[1:4, ],

method = "cosine",
which = "users")
as.matrix(similarity mat)
## 1 2 ) 4

# 1 0.0000000 0.9760860 0.9641723 0.9914398
#H 2 0.9760860 0.0000000 0.9925732 0.9374253
# 3 0.9641723 0.9925732 0.0000000 ©.9888968
# 4 0.9914398 0.9374253 0.9888968 0.0000000

image(as.matrix(similarity mat), main = "User's Similarities")

In the above matrix, each row and column represents a user. We have taken
four users and each cell in this matrix represents the similarity that is

shared between the two users.
Now, we delineate the similarity that is shared between the films —

Code:

movie similarity <- similarity(ratingMatrix([, 1:4], method =
"cosine", which = "items")
as.matrix (movie similarity)

image (as.matrix (movie similarity), main = "Movies similarity")

Output Screenshot:
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movie similarity <- similarity(ratingMatrix[, 1:4], method =
"cosine", which = "items")
as.matrix(movie similarity)

iz | = 3 4
# 1 6.0000000 0.9669732 0.9559341 0.9101276
#H 2 0.9669732 0.0000000 ©.9658757 0.9412416
## 3 0.9559341 0.9658757 0.0000000 0.9864877
#H 4 0.9101276 0.9412416 ©.9864877 0.0000000

image(as.matrix(movie similarity), main = "Movies similarity")

Let us now extract the most unique ratings —

rating values <- as.vector (ratingMatrix@data)

unique (rating values) # extracting unique ratings

Now, we will create a table of ratings that will display the most unique

ratings.

Code:

Table of Ratings <- table(rating values) # creating a count of movie

ratings

Table of Ratings

Output Screenshot:
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rating values <- as.vector{ratingMatrix@data)
unique(rating_values) # extracting unique ratings

# [1] 0.0 5.0 4.0 3.0 4.5 1.5 2.0 3.5 1.0 2.5 0.5

Table of Ratings <- table(rating_values) # creating a count of movie ratings
Table of Ratings

## rating_values

#H 0 8.5 1 1.5 2 2.5 3 =L 4
## 6791761 1198 3258 1567 7943 5484 21729 12237 28880
## 4.5 5

## 8187 14856

This is the right time to check your R and Data Science Learning. Try

these latest interview questions and become a pro.

Most Viewed Movies Visualization

In this section of the machine learning project, we will explore the most
viewed movies in our dataset. We will first count the number of views in a
film and then organize them in a table that would group them in

descending order.

Code:

library (ggplot2)
movie views <- colCounts(ratingMatrix) # count views for each movie
table views <- data.frame (movie = names (movie views),
views = movie views) # create dataframe of views

table views <- table views|[order (table viewsSviews,


https://data-flair.training/blogs/data-science-tutorials-home/#interview-questions
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decreasing = TRUE), | # sort by number of

views
table viewsS$title <- NA
for (index in 1:10325) {
table views[index, 3] <- as.character (subset (movie data,

movie data$movielId ==

table views|[index,1])$title)

table views[1:6,]

Input Screenshot:

library(ggplot2)
movie_views <- colCounts(ratingMatrix) # count views for each movie
table views <- data.frame(movie = names(movie views),
views = movie views) # create dataframe of views

table views <- table views[order(table views$views,

decreasing = TRUE), ] # sort by number of views
table views$title <- NA
for (index in 1:10325){

table views[index,3] <- as.character(subset(movie data,
movie data$movield == table views[inde

x,1])stitle)
}
table views[1:6,]

Output -
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#Hit movie views title
## 296 296 325 Pulp Fiction (1994)
## 356 356 311 Forrest Gump (1994)
## 318 318 3608 Shawshank Redemption, The (1994)
## 480 480 294 Jurassic Park (1993)
## 593 593 290 Silence of the Lambs, The (1991)

#H 260 260 273 Star Wars: Episode IV - A New Hope (1977)

Now, we will visualize a bar plot for the total number of views of the top

films. We will carry this out using ggplot2.

Code:
ggplot (table views[1l:6, ], aes(x = title, y = views)) +
geom bar (stat="identity", fill = 'steelblue') +

geom_text (aes (label=views), vjust=-0.3, size=3.5) +
theme (axis.text.x = element text (angle = 45, hjust = 1)) +

ggtitle ("Total Views of the Top Films")

Input Screenshot:

ggplot(table views[1l:6, ], aes(x = title, y = views)) +
geom bar(stat="identity", fill = 'steelblue') +
geom text(aes(label=views), vjust=-0.3, size=3.5) +
theme(axis.text.x = element text(angle = 45, hjust = 1)) +

ggtitle("Total Views of the Top Films")

Output:
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Total Views of the Top Films

325

311

300 - 294

273

200-

0
=
Q
s
100-
O -
5 B . AN
& & & S
Q}. @\ é\ a\
; \5\0 N N Qp‘Q
& & & & <&
& Q & v v
Q_ab & Q7
& 9 @
& & &
2 ) 3
K 3 K
& = .
N &
9 Q\fo
3

title

From the above bar-plot, we observe that Pulp Fiction is the most-watched

film followed by Forrest Gump.

If you are enjoying this Data Science Recommendation System Project,

DataFlair brings another project for you — Credit Card Fraud Detection

using R. Save the link, you can thank me later

Heatmap of Movie Ratings


https://data-flair.training/blogs/data-science-machine-learning-project-credit-card-fraud-detection/
https://data-flair.training/blogs/data-science-machine-learning-project-credit-card-fraud-detection/
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Now, in this data science project of Recommendation system, we will
visualize a heatmap of the movie ratings. This heatmap will contain first 25

rows and 25 columns as follows —

Code:

image (ratingMatrix[1:20, 1:25], axes = FALSE, main = "Heatmap of the first

25 rows and 25 columns")

Input Screenshot:

image(ratingMatrix[1:20, 1:25], axes = FALSE, main = "Heatmap of the first 25 ro
ws and 25 columns")

Output:

Heatmap of the first 25 rows and 25 columns
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Performing Data Preparation

We will conduct data preparation in the following three steps —

e Selecting useful data.
e Normalizing data.

e Binarizing the data.

For finding useful data in our dataset, we have set the threshold for the
minimum number of users who have rated a film as 50. This is also same
for minimum number of views that are per film. This way, we have filtered

a list of watched films from least-watched ones.

Code:

movie ratings <- ratingMatrix[rowCounts (ratingMatrix) > 50,
colCounts (ratingMatrix) > 50]

Movie ratings

Output Screenshot:

movie ratings <- ratingMatrix[rowCounts(ratingMatrix) = 50,
colCounts({ratingMatrix) > 50]
movie ratings

## 420 x 447 rating matrix of class 'realRatingMatrix' with 38341 ratings.



sle | Smart | Speed

BHooLs

From the above output of ‘movie_ ratings’, we observe that there are 420
users and 447 films as opposed to the previous 668 users and 10325 films.

We can now delineate our matrix of relevant users as follows —

Code:
minimum movies<- quantile (rowCounts (movie ratings), 0.98)
minimum users <- quantile (colCounts (movie ratings), 0.98)

image (movie ratings|[rowCounts (movie ratings) > minimum movies,
colCounts (movie ratings) > minimum users],

main = "Heatmap of the top users and movies")

Input Screenshot:

minimum movies<- quantile(rowCounts(movie ratings), ©.98)
minimum users <- quantile(colCounts(movie ratings), ©.98)
image(movie ratings[rowCounts(movie ratings) > minimum movies,

colCounts(movie ratings) > minimum users],
main = "Heatmap of the top users and movies")

Output:



oo

Heatmap of the top users and movies

IS

Users (Rows)

(o]

2 4 6 8

Items (Columns)
Dimensions: 9x9

— Learn the concepts in an easy way

Now, we will visualize the distribution of the average ratings per user.
average ratings <- rowMeans (movie ratings)

gplot (average ratings, fill=I("steelblue"), col=I("red")) +

ggtitle ("Distribution of the average rating per user")

Output Screenshot:


https://data-flair.training/blogs/data-visualization-in-r/
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average ratings <- rowMeans(movie ratings)
gplot(average ratings, fill=I("steelblue"), col=I("red")) +
ggtitle("Distribution of the average rating per user")

## “stat bin()" using “bins = 30 . Pick better value with “binwidth’.

Output:

Distribution of the average rating per user

40~

30-

20-

10-

average ratings

Data Normalization
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In the case of some users, there can be high ratings or low ratings provided
to all of the watched films. This will act as a bias while implementing our
model. In order to remove this, we normalize our data. Normalization is a
data preparation procedure to standardize the numerical values in a
column to a common scale value. This is done in such a way that there is no
distortion in the range of values. Normalization transforms the average
value of our ratings column to 0. We then plot a heatmap that delineates

our normalized ratings.

Code:

normalized ratings <- normalize (movie ratings)

sum (rowMeans (normalized ratings) > 0.00001)

image (normalized ratings[rowCounts (normalized ratings) > minimum movies,
colCounts (normalized ratings) > minimum users],

main = "Normalized Ratings of the Top Users")

Output Screenshot:

normalized ratings <- normalize(movie ratings)
sum( rowMeans (normalized ratings) > 0.080801)

# [1] ©

image(normalized ratings[rowCounts(normalized ratings) > minimum movies,
colCounts(normalized ratings) > minimum users],
main = "Normalized Ratings of the Top Users")

Output:
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Normalized Ratings of the Top Users

Users (Rows)

Items (Columns)
Dimensions: 9x9

Performing Data Binarization

In the final step of our data preparation in this data science project, we will
binarize our data. Binarizing the data means that we have two discrete

values 1 and 0, which will allow our recommendation systems to work more
efficiently. We will define a matrix that will consist of 1 if the rating is above

3 and otherwise it will be 0.

Code:
binary minimum movies <- quantile (rowCounts (movie ratings), 0.95)
binary minimum users <- gquantile(colCounts (movie ratings), 0.85)

#movies watched <- binarize (movie ratings, minRating = 1)
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good rated films <- binarize (movie ratings, minRating = 3)
image (good rated films[rowCounts (movie ratings) > binary minimum movies,
colCounts (movie ratings) > binary minimum users],

main = "Heatmap of the top users and movies")

Input Screenshot:

binary minimum movies <- quantile(rowCounts(movie ratings), 0.95)
binary minimum users <- gquantile(colCounts(movie ratings), 0.95)
#movies watched <- biparize(movie ratings, minRating = 1)

good rated films <- binarize(movie ratings, minRating = 3)

image(good rated films[rowCounts(movie ratings) > binary minimum movies,
colCounts(movie ratings) = binary minimum users],

main = "Heatmap of the top users and movies")

Output:



Heatmap of the top users and movies

Users (Rows)
o

15

20

5 10 15 20

Items (Columns)
Dimensions: 21 x 23

Collaborative Filtering System

In this section of data science project, we will develop our very own Item
Based Collaborative Filtering System. This type of collaborative filtering
finds similarity in the items based on the people’s ratings of them. The
algorithm first builds a similar-items table of the customers who have
purchased them into a combination of similar items. This is then fed into

the recommendation system.

The similarity between single products and related products can be

determined with the following algorithm —
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e For each Item i1 present in the product catalog, purchased by
customer C.

e And, for each item i2 also purchased by the customer C.

e Create record that the customer purchased items i1 and i2.

e Calculate the similarity between i1 and i2.

We will build this filtering system by splitting the dataset into 80% training

set and 20% test set.

Code:

sampled data<- sample(x = c(TRUE, FALSE),
size = nrow(movie ratings),
replace = TRUE,
prob = ¢ (0.8, 0.2))
training data <- movie ratings|[sampled data, |

testing data <- movie ratings|[!sampled data, |

Input Screenshot:

sampled data<- sample(x = c(TRUE, FALSE),

size = nrow(movie ratings),

replace = TRUE,

prob = c(0.8, 0.2))
training data <- movie ratings[sampled data, ]
testing data <- movie ratings[!sampled data, |
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System using R

We will now explore the various parameters of our Item Based

Collaborative Filter. These parameters are default in nature. In the first step,
k denotes the number of items for computing their similarities. Here, k is
equal to 30. Therefore, the algorithm will now identify the k most similar
items and store their number. We use the cosine method which is the

default one but you can also use pearson method.

Code:

recommendation system <- recommenderRegistry$get entries (dataType

="realRatingMatrix")

recommendation system$SIBCF realRatingMatrix$parameters

Output Screenshot:

recommendation system <- recommenderRegistry$get entries(dataType ="realRatingMatrix")
recommendation system$IBCF realRatingMatrix$parameters

## sk

## [1] 30

##

## smethod

## [1] "Cosine"
##

## Snormalize
## [1] "center”
=

## $normalize sim matrix
## [1] FALSE
##

## salpha

# [1] 0.5

s

## $na_as zero
## [1] FALSE
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Code:

recommen model <- Recommender (data = training data,

method = "IBCFEF",

parameter list (k = 30))

recommen model

class (recommen model)

Output Screenshot:

recommen model <- Recommender(data = training data,
method = "IBCF",
parameter = list(k = 30))
recommen_ model

## Recommender of type 'IBCF' for 'realRatingMatrix'
## learned using 337 users.

class(recommen model)

## [1] "Recommender™
# attr(, "package")
## [1] "recommenderlab"

Let us now explore our data science recommendation system model as
follows —

Using the getModel() function, we will retrieve the recommen_model. We

will then find the class and dimensions of our similarity matrix that is
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contained within model_info. Finally, we will generate a heatmap, that will

contain the top 20 items and visualize the similarity shared between them.

Code:

model info <- getModel (recommen model)

class (model info$sim)

dim(model info$sim)

top items <- 20

image (model info$sim[l:top items, l:top items],

main = "Heatmap of the first rows and columns")

Output Screenshot:
model info <- getModel(recommen model)
class(model info%$sim) # this contains a similarity matrix

#Ht [1] "dgCMatrix"
## attr(,"package")
#Ht [1] "Matrix"

dim(model info$sim)
#H[1] 447 447

top items <- 20
image(model info%$sim[l:top items, 1l:top items],
main = "Heatmap of the first rows and columns")




Output:

Heatmap of the first rows and columns
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Dimensions: 20 x 20

In the next step of ML project, we will carry out the sum of rows and
columns with the similarity of the objects above 0. We will visualize the

sum of columns through a distribution as follows —

Code:

sum_rows <- rowSums (model info$sim > 0)

table (sum_rows)
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sum_cols <- colSums (model infoS$sim > 0)

gplot (sum cols, £fill=I("steelblue"), col=I("red"))+ ggtitle("Distribution

of the column count")

Output Screenshot:

sum_rows <- rowSums(model_info$sim > @)
table(sum rows)

## sum_rows
## 30
## 447

sum _cols <- colSums(model info$sim > 0)
gplot(sum cols, fill=I("steelblue"), col=I("red"))+ ggtitle("Distribution of the
column count")

## “stat bin()" using “bins = 30°. Pick better value with “binwidth".

Output:
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Distribution of the column count
60 -

40~

20-

0 50 100 150
sum_cols

How to build Recommender
System on dataset using R?

We will create a top_recommendations variable which will be initialized to
10, specifying the number of films to each user. We will then use the
predict() function that will identify similar items and will rank them
appropriately. Here, each rating is used as a weight. Each weight is

multiplied with related similarities. Finally, everything is added in the end.

Code:

top recommendations <- 10 # the number of items to recommend to each user
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predicted recommendations <- predict (object = recommen model,

newdata = testing data,

n = top recommendations)
predicted recommendations
Output Screenshot:
top recommendations <- 10 # the number of items to recommend to each user

predicted recommendations <- predict(object = recommen model,
newdata = testing data,
n = top recommendations)

predicted recommendations

## Recommendations as 'topNList' with n = 10 for 83 users.

Code:

userl <- predicted recommendations@items[[1l]] # recommendation for the

first user

movies userl <- predicted recommendations@itemLabels[userl]
movies user2 <- movies userl

for (index in 1:10) {

movies user2Z[index] <- as.character (subset (movie data,

movie data$movielId ==

movies userl[index])Stitle)

movies user?2

Output Screenshot:
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userl <- predicted recommendations@items[[1l]] # recommendation for the first use
r
movies userl <- predicted recommendations@itemlLabels[userl]
movies user2 <- movies userl
for (index in 1:10){
movies user2[index] <- as.character(subset(movie data,
movie datas$movield == movies userl[inde
x])$title)
}

movies userz

Output:

# [1] "Broken Arrow (1996)"

# [2] "Species (1995)"

#t [3] "Mask, The (1994)"

# [4] "Executive Decision (1996)"

## [5] "Annie Hall (1977)"

# [6] "Little Miss Sunshine (2006)"

# [7] "Pan's Labyrinth (Laberinto del fauno, El) (2006)"
## [8] "Hangover, The (2009)"

# [9] "Mrs. Doubtfire (1993)"

## [10] "Leaving Las Vegas (1995)"

Code:

recommendation matrix <- sapply(predicted recommendations@items,

function(x) { as.integer (colnames (movie ratings) [x]) })

# matrix with the recommendations for each user
#dim(recc matrix)

recommendation matrix|[,1:4]

Output Screenshot:
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recommendation matrix <- sapply(predicted recommendations@items,
function(x){ as.integer(colnames(movie ratings)[x1) }) # m
atrix with the recommendations Tor each user
#dim(recc matrix)
recommendation matrix[,1:4]

## (.11 .21 [,31 [.4]
# [1,] 95 7 1748 145
#[2,] 196 145 2321 1517
# [3,] 367 163 145 163
#[4,1] 494 265 141 2005
# [5,] 1230 339 435 4896
## [6,] 46578 350 4022 160
## [7,] 48394 355 5218 420
# [8,] 69122 370 474 2671

Output:

Distribution of the number of items for IBCF

1 2 3 4 5 6 7 8 9 10
item_count

100-

75~
50-
25+

0-
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Output:
#i Movie title No of items
# 21 Get Shorty (1995) 10
## 145 Bad Boys (1995) 10
## 19 Ace Ventura: When Nature Calls (1995) 9
## 34 Babe (1995) 9

Summary

Recommendation Systems are the most popular type of machine learning
applications that are used in all sectors. They are an improvement over the
traditional classification algorithms as they can take many classes of input
and provide similarity ranking based algorithms to provide the user with
accurate results. These recommendation systems have evolved over time
and have incorporated many advanced machine learning techniques to

provide the users with the content that they want
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