
Data Science Movie

Recommendation System

Project in R
Have you ever been on an online streaming platform like Netflix, Amazon

Prime, Voot? I watched a movie and after some time, that platform started

recommending me different movies and TV shows. I wondered, how the

movie streaming platform could suggest me content that appealed to me.

Then I came across something known as Recommendation System. This

system is capable of learning my watching patterns and providing me with

relevant suggestions. Having witnessed the fourth industrial revolution

where Artificial Intelligence and other technologies are dominating the

market, I am sure that you must have come across a recommendation

system in your everyday life. I am also sure that by this time curiosity must

be getting the best of you. Therefore, in this Machine Learning Project, I

will teach you to build your own recommendation system. So. let’s start.

Movie Recommendation System
Project using ML
The main goal of this machine learning project is to build a

recommendation engine that recommends movies to users. This R project

is designed to help you understand the functioning of how a

recommendation system works. We will be developing an Item Based

Collaborative Filter. By the end of this tutorial, you will gain experience of

implementing your R, Data Science, andMachine learning skills in a real-

life project.

Before moving ahead in this movie recommendation system project in ML,

you need to know what recommendation system means. Read below to find

the answer.

What is a Recommendation System?

A recommendation system provides suggestions to the users through a

filtering process that is based on user preferences and browsing history.

The information about the user is taken as an input. The information is

taken from the input that is in the form of browsing data. This information

reflects the prior usage of the product as well as the assigned ratings. A

recommendation system is a platform that provides its users with various

contents based on their preferences and likings. A recommendation system

takes the information about the user as an input. The recommendation

system is an implementation of the

machine learning algorithms.

A recommendation system also finds a similarity between the different

products. For example, Netflix Recommendation System provides you with

the recommendations of the movies that are similar to the ones that have

https://data-flair.training/blogs/machine-learning-algorithms/

been watched in the past. Furthermore, there is a collaborative content

filtering that provides you with the recommendations in respect with the

other users who might have a similar viewing history or preferences. There

are two types of recommendation systems – Content-Based

Recommendation System and Collaborative Filtering Recommendation. In

this project of recommendation system in R, we will work on a collaborative

filtering recommendation system and more specifically, ITEM based

collaborative recommendation system.

You must check how Netflix recommendation engine works

How to build a Movie
Recommendation System using
Machine Learning

Dataset
In order to build our recommendation system, we have used the MovieLens

Dataset. You can find the movies.csv and ratings.csv file that we have used

in our Recommendation System Project here. This data consists of 105339

ratings applied over 10329 movies.

Importing Essential Libraries
In our Data Science project, we will make use of these four packages –

‘recommenderlab’, ‘ggplot2’, ‘data.table’ and ‘reshape2’.

Code:

https://data-flair.training/blogs/data-science-at-netflix/
https://drive.google.com/file/d/1Dn1BZD3YxgBQJSIjbfNnmCFlDW2jdQGD/view

library(recommenderlab)

Output Screenshot:

Code:

library(ggplot2) #Author DataFlair

library(data.table)

library(reshape2)

Output Screenshot:

Wait! Don’t forget to check our leading guide on R programming

classification

Retrieving the Data
We will now retrieve our data from movies.csv into movie_data dataframe

and ratings.csv into rating_data. We will use the str() function to display

information about the movie_data dataframe.

Code:

setwd("/home/dataflair/data/movie_data") #Author

DataFlair

movie_data <- read.csv("movies.csv",stringsAsFactors=FALSE)

https://data-flair.training/blogs/classification-in-r/
https://data-flair.training/blogs/classification-in-r/

rating_data <- read.csv("ratings.csv")

str(movie_data)

Output Screenshot:

ad
We can overview the summary of the movies using the summary() function.

We will also use the head() function to print the first six lines of

movie_data

Code:

summary(movie_data) #Author DataFlair

Output Screenshot:

Code:

head(movie_data)

Output Screenshot:

Similarly, we can output the summary as well as the first six lines of the

‘rating_data’ dataframe –

Code:

summary(rating_data) #Author DataFlair

Output Screenshot:

Code:

head(rating_data)

Output Screenshot:

Revise your R concepts with DataFlair for Free, checkout 120+ FREE R

Tutorials

Data Pre-processing
From the above table, we observe that the userId column, as well as the

movieId column, consist of integers. Furthermore, we need to convert the

genres present in the movie_data dataframe into a more usable format by

the users. In order to do so, we will first create a one-hot encoding to create

a matrix that comprises of corresponding genres for each of the films.

Code:

movie_genre <- as.data.frame(movie_data$genres, stringsAsFactors=FALSE)

library(data.table)

movie_genre2 <- as.data.frame(tstrsplit(movie_genre[,1], '[|]',

type.convert=TRUE),

stringsAsFactors=FALSE) #DataFlair

colnames(movie_genre2) <- c(1:10)

list_genre <- c("Action", "Adventure", "Animation", "Children",

"Comedy", "Crime","Documentary", "Drama", "Fantasy",

"Film-Noir", "Horror", "Musical", "Mystery","Romance",

"Sci-Fi", "Thriller", "War", "Western")

genre_mat1 <- matrix(0,10330,18)

genre_mat1[1,] <- list_genre

https://data-flair.training/blogs/r-tutorials-home/
https://data-flair.training/blogs/r-tutorials-home/

colnames(genre_mat1) <- list_genre

for (index in 1:nrow(movie_genre2)) {

for (col in 1:ncol(movie_genre2)) {

gen_col = which(genre_mat1[1,] == movie_genre2[index,col]) #Author

DataFlair

genre_mat1[index+1,gen_col] <- 1

}

}

genre_mat2 <- as.data.frame(genre_mat1[-1,], stringsAsFactors=FALSE)

#remove first row, which was the genre list

for (col in 1:ncol(genre_mat2)) {

genre_mat2[,col] <- as.integer(genre_mat2[,col]) #convert from characters

to integers

}

str(genre_mat2)

Screenshot:

Output –

In the next step of Data Pre-processing of R project, we will create a ‘search

matrix’ that will allow us to perform an easy search of the films by

specifying the genre present in our list.

Code:

SearchMatrix <- cbind(movie_data[,1:2], genre_mat2[])

head(SearchMatrix) #DataFlair

Output Screenshot:

There are movies that have several genres, for example, Toy Story, which is

an animated film also falls under the genres of Comedy, Fantasy, and

Children. This applies to the majority of the films.

For our movie recommendation system to make sense of our ratings

through recommenderlabs, we have to convert our matrix into a sparse

matrix one. This new matrix is of the class ‘realRatingMatrix’. This is

performed as follows:

Code:

ratingMatrix <- dcast(rating_data, userId~movieId, value.var = "rating",

na.rm=FALSE)

ratingMatrix <- as.matrix(ratingMatrix[,-1]) #remove userIds

#Convert rating matrix into a recommenderlab sparse matrix

ratingMatrix <- as(ratingMatrix, "realRatingMatrix")

ratingMatrix

Output Screenshot:

Are you facing any trouble in implementing recommendation system

project in R? Comment below, DataFlair Team is ready to help you.

Let us now overview some of the important parameters that provide us

various options for building recommendation systems for movies-

Code:

recommendation_model <- recommenderRegistry$get_entries(dataType =

"realRatingMatrix")

names(recommendation_model)

Output Screenshot:

Code:

lapply(recommendation_model, "[[", "description")

Output Screenshot:

Want to become the next data scientist? Try out the best way and explore

Data Science Tutorials Series to learn Data Science in an easy way with

DataFlair!!

We will implement a single model in our R project – Item Based

Collaborative Filtering.

Code:

recommendation_model$IBCF_realRatingMatrix$parameters

Output Screenshot:

Exploring Similar Data

https://data-flair.training/blogs/data-science-tutorials-home/

Collaborative Filtering involves suggesting movies to the users that are

based on collecting preferences from many other users. For example, if a

user A likes to watch action films and so does user B, then the movies that

the user B will watch in the future will be recommended to A and vice-versa.

Therefore, recommending movies is dependent on creating a relationship of

similarity between the two users. With the help of recommenderlab, we can

compute similarities using various operators like cosine, pearson as well as

jaccard.

Code:

similarity_mat <- similarity(ratingMatrix[1:4,],

method = "cosine",

which = "users")

as.matrix(similarity_mat)

image(as.matrix(similarity_mat), main = "User's Similarities")

Output Screenshot:

In the above matrix, each row and column represents a user. We have taken

four users and each cell in this matrix represents the similarity that is

shared between the two users.

Now, we delineate the similarity that is shared between the films –

Code:

movie_similarity <- similarity(ratingMatrix[, 1:4], method =

"cosine", which = "items")

as.matrix(movie_similarity)

image(as.matrix(movie_similarity), main = "Movies similarity")

Output Screenshot:

Let us now extract the most unique ratings –

rating_values <- as.vector(ratingMatrix@data)

unique(rating_values) # extracting unique ratings

Now, we will create a table of ratings that will display the most unique

ratings.

Code:

Table_of_Ratings <- table(rating_values) # creating a count of movie

ratings

Table_of_Ratings

Output Screenshot:

This is the right time to check your R and Data Science Learning. Try

these latest interview questions and become a pro.

Most Viewed Movies Visualization
In this section of the machine learning project, we will explore the most

viewed movies in our dataset. We will first count the number of views in a

film and then organize them in a table that would group them in

descending order.

Code:

library(ggplot2)

movie_views <- colCounts(ratingMatrix) # count views for each movie

table_views <- data.frame(movie = names(movie_views),

views = movie_views) # create dataframe of views

table_views <- table_views[order(table_views$views,

https://data-flair.training/blogs/data-science-tutorials-home/#interview-questions

decreasing = TRUE),] # sort by number of

views

table_views$title <- NA

for (index in 1:10325){

table_views[index,3] <- as.character(subset(movie_data,

movie_data$movieId ==

table_views[index,1])$title)

}

table_views[1:6,]

Input Screenshot:

Output –

Now, we will visualize a bar plot for the total number of views of the top

films. We will carry this out using ggplot2.

Code:

ggplot(table_views[1:6,], aes(x = title, y = views)) +

geom_bar(stat="identity", fill = 'steelblue') +

geom_text(aes(label=views), vjust=-0.3, size=3.5) +

theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

ggtitle("Total Views of the Top Films")

Input Screenshot:

Output:

From the above bar-plot, we observe that Pulp Fiction is the most-watched

film followed by Forrest Gump.

If you are enjoying this Data Science Recommendation System Project,

DataFlair brings another project for you – Credit Card Fraud Detection

using R. Save the link, you can thank me later

Heatmap of Movie Ratings

https://data-flair.training/blogs/data-science-machine-learning-project-credit-card-fraud-detection/
https://data-flair.training/blogs/data-science-machine-learning-project-credit-card-fraud-detection/

Now, in this data science project of Recommendation system, we will

visualize a heatmap of the movie ratings. This heatmap will contain first 25

rows and 25 columns as follows –

Code:

image(ratingMatrix[1:20, 1:25], axes = FALSE, main = "Heatmap of the first

25 rows and 25 columns")

Input Screenshot:

Output:

Performing Data Preparation
We will conduct data preparation in the following three steps –

● Selecting useful data.

● Normalizing data.

● Binarizing the data.

For finding useful data in our dataset, we have set the threshold for the

minimum number of users who have rated a film as 50. This is also same

for minimum number of views that are per film. This way, we have filtered

a list of watched films from least-watched ones.

Code:

movie_ratings <- ratingMatrix[rowCounts(ratingMatrix) > 50,

colCounts(ratingMatrix) > 50]

Movie_ratings

Output Screenshot:

From the above output of ‘movie_ratings’, we observe that there are 420

users and 447 films as opposed to the previous 668 users and 10325 films.

We can now delineate our matrix of relevant users as follows –

Code:

minimum_movies<- quantile(rowCounts(movie_ratings), 0.98)

minimum_users <- quantile(colCounts(movie_ratings), 0.98)

image(movie_ratings[rowCounts(movie_ratings) > minimum_movies,

colCounts(movie_ratings) > minimum_users],

main = "Heatmap of the top users and movies")

Input Screenshot:

Output:

Data Visualization in R – Learn the concepts in an easy way

Now, we will visualize the distribution of the average ratings per user.

average_ratings <- rowMeans(movie_ratings)

qplot(average_ratings, fill=I("steelblue"), col=I("red")) +

ggtitle("Distribution of the average rating per user")

Output Screenshot:

https://data-flair.training/blogs/data-visualization-in-r/

Output:

Data Normalization

In the case of some users, there can be high ratings or low ratings provided

to all of the watched films. This will act as a bias while implementing our

model. In order to remove this, we normalize our data. Normalization is a

data preparation procedure to standardize the numerical values in a

column to a common scale value. This is done in such a way that there is no

distortion in the range of values. Normalization transforms the average

value of our ratings column to 0. We then plot a heatmap that delineates

our normalized ratings.

Code:

normalized_ratings <- normalize(movie_ratings)

sum(rowMeans(normalized_ratings) > 0.00001)

image(normalized_ratings[rowCounts(normalized_ratings) > minimum_movies,

colCounts(normalized_ratings) > minimum_users],

main = "Normalized Ratings of the Top Users")

Output Screenshot:

Output:

Performing Data Binarization
In the final step of our data preparation in this data science project, we will

binarize our data. Binarizing the data means that we have two discrete

values 1 and 0, which will allow our recommendation systems to work more

efficiently. We will define a matrix that will consist of 1 if the rating is above

3 and otherwise it will be 0.

Code:

binary_minimum_movies <- quantile(rowCounts(movie_ratings), 0.95)

binary_minimum_users <- quantile(colCounts(movie_ratings), 0.95)

#movies_watched <- binarize(movie_ratings, minRating = 1)

good_rated_films <- binarize(movie_ratings, minRating = 3)

image(good_rated_films[rowCounts(movie_ratings) > binary_minimum_movies,

colCounts(movie_ratings) > binary_minimum_users],

main = "Heatmap of the top users and movies")

Input Screenshot:

Output:

Collaborative Filtering System
In this section of data science project, we will develop our very own Item

Based Collaborative Filtering System. This type of collaborative filtering

finds similarity in the items based on the people’s ratings of them. The

algorithm first builds a similar-items table of the customers who have

purchased them into a combination of similar items. This is then fed into

the recommendation system.

The similarity between single products and related products can be

determined with the following algorithm –

● For each Item i1 present in the product catalog, purchased by

customer C.

● And, for each item i2 also purchased by the customer C.

● Create record that the customer purchased items i1 and i2.

● Calculate the similarity between i1 and i2.

We will build this filtering system by splitting the dataset into 80% training

set and 20% test set.

Code:

sampled_data<- sample(x = c(TRUE, FALSE),

size = nrow(movie_ratings),

replace = TRUE,

prob = c(0.8, 0.2))

training_data <- movie_ratings[sampled_data,]

testing_data <- movie_ratings[!sampled_data,]

Input Screenshot:

Building the Recommendation
System using R
We will now explore the various parameters of our Item Based

Collaborative Filter. These parameters are default in nature. In the first step,

k denotes the number of items for computing their similarities. Here, k is

equal to 30. Therefore, the algorithm will now identify the k most similar

items and store their number. We use the cosine method which is the

default one but you can also use pearson method.

Code:

recommendation_system <- recommenderRegistry$get_entries(dataType

="realRatingMatrix")

recommendation_system$IBCF_realRatingMatrix$parameters

Output Screenshot:

Code:

recommen_model <- Recommender(data = training_data,

method = "IBCF",

parameter = list(k = 30))

recommen_model

class(recommen_model)

Output Screenshot:

Let us now explore our data science recommendation system model as

follows –

Using the getModel() function, we will retrieve the recommen_model. We

will then find the class and dimensions of our similarity matrix that is

contained within model_info. Finally, we will generate a heatmap, that will

contain the top 20 items and visualize the similarity shared between them.

Code:

model_info <- getModel(recommen_model)

class(model_info$sim)

dim(model_info$sim)

top_items <- 20

image(model_info$sim[1:top_items, 1:top_items],

main = "Heatmap of the first rows and columns")

Output Screenshot:

Output:

In the next step of ML project, we will carry out the sum of rows and

columns with the similarity of the objects above 0. We will visualize the

sum of columns through a distribution as follows –

Code:

sum_rows <- rowSums(model_info$sim > 0)

table(sum_rows)

sum_cols <- colSums(model_info$sim > 0)

qplot(sum_cols, fill=I("steelblue"), col=I("red"))+ ggtitle("Distribution

of the column count")

Output Screenshot:

Output:

How to build Recommender
System on dataset using R?
We will create a top_recommendations variable which will be initialized to

10, specifying the number of films to each user. We will then use the

predict() function that will identify similar items and will rank them

appropriately. Here, each rating is used as a weight. Each weight is

multiplied with related similarities. Finally, everything is added in the end.

Code:

top_recommendations <- 10 # the number of items to recommend to each user

predicted_recommendations <- predict(object = recommen_model,

newdata = testing_data,

n = top_recommendations)

predicted_recommendations

Output Screenshot:

Code:

user1 <- predicted_recommendations@items[[1]] # recommendation for the

first user

movies_user1 <- predicted_recommendations@itemLabels[user1]

movies_user2 <- movies_user1

for (index in 1:10){

movies_user2[index] <- as.character(subset(movie_data,

movie_data$movieId ==

movies_user1[index])$title)

}

movies_user2

Output Screenshot:

Output:

Code:

recommendation_matrix <- sapply(predicted_recommendations@items,

function(x){ as.integer(colnames(movie_ratings)[x]) })

matrix with the recommendations for each user

#dim(recc_matrix)

recommendation_matrix[,1:4]

Output Screenshot:

Output:

Output:

Summary

Recommendation Systems are the most popular type of machine learning

applications that are used in all sectors. They are an improvement over the

traditional classification algorithms as they can take many classes of input

and provide similarity ranking based algorithms to provide the user with

accurate results. These recommendation systems have evolved over time

and have incorporated many advanced machine learning techniques to

provide the users with the content that they want

	Data Science Movie Recommendation System Project i
	Have you ever been on an online streaming platform
	Movie Recommendation System Project using ML
	What is a Recommendation System?
	How to build a Movie Recommendation System using M
	Dataset
	Importing Essential Libraries
	Retrieving the Data
	Data Pre-processing
	Exploring Similar Data

	Most Viewed Movies Visualization
	Heatmap of Movie Ratings
	Performing Data Preparation
	Data Normalization
	Performing Data Binarization

	Collaborative Filtering System
	Building the Recommendation System using R
	How to build Recommender System on dataset using R
	Summary

